Волновые электростанции преобразовывают механическую энергию воды в электричество

Волновые электростанции

Волновая электростанция — это электрическая станция, которая располагается в водной природной среде с целью получения электроэнергии из кинетической энергии водных масс. Океаны обладают колоссальной энергией, но человек пока только начинает ее осваивать. Именно эту задачу и выполняют волновые электростанции.

Принцип работы

Принцип работы волновой электростанции основан на преобразовании кинетической энергии волн в электрическую. Существует несколько способов устройства подобных станций различных по принципу работы и конструкции.

  1. Принцип «осциллирующего водяного столба». В этом конструктивном варианте волны,
    осуществляя толчковые движения, заполняют собой специально изготовленные камеры, в которых содержатся воздушные массы. Воздух сжимается, создается избыточное давление, под действием которого он поступает на турбину, вращая ее лопастные механизмы. Вращательное движение турбины передается на генератор, который вырабатывает электрический ток.
  2. Принцип «колеблющегося тела». На принципе «колеблющегося тела» работают разнообразные буи, «морские змеи» и др. В этом варианте конструкции несколько секций соединяются в конвертер, между которыми на подвижных платформах монтируются гидравлические поршни. К поршню (группе поршней) подсоединён гидравлический двигатель, он приводит во вращательное движение электрический генератор. Под раскачивающимся действием волн конвертер приводит в движение поршни, а они, в свою очередь, приводят в работу гидравлический двигатель и соответственно генератор.
  3. Установка с «искусственным атоллом». Это бетонное сооружение состоит из корпуса, на которомразмещается поверхность для наката волн. В средней части располагается накопительный резервуар (бассейн). Из него через приёмное отверстие вода поступает на гидротурбину. Генератор устанавливается в верхней части сооружения. Для поднятия воды в бассейн, который расположен выше уровня моря, используют эффект «набегания волны» на специальную наклонную поверхность.

Волновые электростанции в России

В России, как и во всех странах, имеющих выход к морскому побережью, после многих лет затишья, возвращается интерес к источникам энергии, способным восстанавливаться, к ним относятся и волновые электростанции.

Первая в нашей стране электростанция, основанная на преобразовании энергии волн, построена в2014 году на Дальнем Востоке в Приморском крае на полуострове Гамова. Это универсальная станция, она способна преобразовывать не только энергию направленных водных масс, но и энергию природных приливов и отливов.

Профильные министерства нашей страны, совместно с руководством государства разработали план развития зеленой энергетики до 2020 года, в соответствии с которым альтернативные энергетические источники будут составлять до 5% от общего количества вырабатываемого электричества в стране. Этим планом предусмотрено и дальнейшее развитие волновых электрических станций.

Волновые электростанции в мире

Первая в мире электростанция на волнах появилась в 1985 году в Норвегии, ее мощность составляла 500 кВт.

Первой в мире промышленной электрической станцией, использующей энергию волн для производстваэлектрической энергии, принято считать Oceanlinx в Австралии.

Она начала своё функционирование в 2005 году, потом была произведена ее реконструкция, и в 2009 году станция заработала вновь. Работа станции основана на принципе «осциллирующего водяного столба».

Мощность установки сейчас составляет 450 кВт.

Первая коммерческая волновая электростанция начала работу в 2008 году в Агусадоре, Португалия. Это установка-пионер, которая использует непосредственно механическую энергию волны.

Работа станции основана на принципе «колеблющегося тела».

Разработала проект английская компания Pelamis Wave Power, мощность станции составила 2,3 МВт, и есть возможность увеличения мощности путем монтирования дополнительных секций.

В Великобритании построили самую большую в мире волновую электростанцию Wave Hub, она расположена у полуострова Корнуэлла. Электростанция оборудована 4-мя генераторами мощностью по 150 кВт каждый. Работа станции основана на принципе «колеблющегося тела».

Почему это выгодно?

В существующем мире человек все чаще задумывается о необходимости применения возобновляемых источников энергии при получении электроэнергии. Одним из таких вариантов является энергия морских волн.

С учетом того, что мировой океан обладает огромным потенциалом, энергией которого можно обеспечить почти 20% от необходимого количества энергопотребления, то и развитие «зеленой»энергетики как нельзя актуально в наше время.

Это можно объяснить следующим причинами:

  1. Природные богатства планеты находятся на грани истощения, запасы традиционных источников энергии: угля, нефти и газа – подходят к концу.
  2. Атомная энергетика из-за своей потенциальной опасности не получила должного распространения.
  3. «Зеленая» энергетика не вредит окружающей среде и является возобновляемой.
  4. Потенциал волновых электростанций оценивается в 2,0 млн. МВт, что сравнимо по мощности с тысячей работающих атомных станций.

Ученые всего мира продолжают работы по совершенствованию способов преобразования энергии волн океана, и перечисленные выше причины являются важным аргументом для продолжения этих изысканий.

Плюсы и минусы использования

У любого агрегата всегда есть положительные и отрицательные аспекты его использования, и именно соотношение этих параметров определяет целесообразность его применения. Волновые электростанции не являются исключением, рассмотрим все за и против использования этого источника энергии.

К плюсам использования можно отнести:

  • Экологическая безопасность установок;
  • Волновые электростанции могут выполнять защитные функции, путем гашения волн вблизи портовых акваторий и прочей береговой линии;
  • Возобновляемый источник энергии;
  • Низкая себестоимость получаемой электроэнергии;
  • Продолжительный срок эксплуатации.

К минусам данного типа электростанций относятся:

  • Малая мощность вырабатываемой энергии;
  • Не стабильный характер работы, вызванный атмосферными явлениями в окружающей среде;
  • Может создавать опасность для хода судов и промышленного лова рыбы.

Приведенные выше «минусы» использования постепенно утрачивают свою актуальность, ученые и конструкторы продолжают свою работу. Разработка новых, более мощных генераторов, позволяет получать большее количество электрической энергии, при тех же исходных параметрах первичной энергии, которой является энергия волн. Решаются задачи по передаче полученной энергии на большие расстояния.

Источник: https://alter220.ru/voda/volnovye-elektrostantsii.html

Энергия волн как альтернативный источник электроэнергии

Энергия волн – энергия, которую волны переносят по поверхности воды. Это неисчерпаемый источник, пригодный для получения электричества. Для преобразования энергии волны в электроэнергию сооружают электростанции волновые. Их монтируют непосредственно в воду.<\p>

В перспективе волновая генерация может за год выдать 4 ТВт в прибрежных зонах и до нескольких десятков ТВт в открытом море.

Природа явления

Волнообразование – есть результат воздействия солнечных лучей. Солнце нагревает воздушные массы, из-за чего они перемещаются в пространстве. В процессе перетекания воздух соприкасается с поверхностью океана, инициируя возникновение волны.

Энергоемкость конкретного волнового вала определяется:

  • силой ветров;
  • продолжительностью порывов;
  • шириной воздушного фронта.

Максимальное значение энергоемкости одной волны достигает 100 кВт на 1 м. Данный показатель существенно понижается на мелководье, что объясняется трением о дно водоема.

Принцип действия классической волновой электростанции

Осциллирующая водяная колонна с воздушной турбиной Уэллса являет собой классический, наиболее проработанный вид волновой электростанции. Аналогичное оборудование успешно функционирует как в море, так и в прибрежной зоне.

Принцип работы одинаков и для стационарных, и для плавучих моделей. Волной в, наполовину погруженной в воду, камере поднимается уровень воды. Благодаря заполнению внутреннего объема агрегата водой, воздух, находящийся внутри, под давлением выдавливается из сосуда.

Образовавшиеся воздушные потоки пропускаются через лопасти реверсивной турбины низкого давления Уэллса. Когда возникает откат воды, воздух возвращается в камеру, минуя все те же турбинные лопатки.

Уэллс добился сохранения направления вращения вала турбины вне зависимости от направления движения волны, что обеспечивает непрерывность передачи крутящего момента на вал генератора.

Турбина Алана Артура Уэллса избавлена от сложных механизмов измерения шага, а также систем клапанов. Агрегат имеет симметричное сечение и сравнительно большой угол атаки лопастей. В целом механизм характеризуется:

  • малым отношением скорости вращения к скорости потока воздуха;
  • высоким коэффициентом лобового сопротивления;
  • периодическими провалами мощности;
  • КПД на уровне 40-70%;
  • шумностью – издаваемые им, звуки сопоставимы со звучанием огромного органа.

 

Совершенствование классической модели

Принцип действия подобных агрегатов сохраняется неизменным. Конструкторы пытаются изменить архитектуру камеры, чтобы добиться максимального сжатия воздушной массы внутри нее. Усовершенствованная модель камеры позволяет изменять ее объем и геометрию в зависимости от состояния акватории.

Эффективность этой идеи доказали и теоретически, и практически. В итоге удалось избавиться от перепадов мощности станции, обусловленных падением высоты волны, и защитить оборудование от чрезмерных нагрузок и разрушения во время штормов.

Такая станция с «дышащей» камерой функционирует в Атлантике у португальских берегов. Ее мощности в 750 кВт достаточно для обеспечения электричеством около 1000 семей. Там планируется создать огромный прибрежный генерирующий каскад.

]

В перспективе плавучие волновые станции этого типа будут строить там, где функционируют ветровые фермы, используя единую якорную систему для электростанций обоих видов.

Буй-генератор

Ocean Power Technologies (OPT) – инжиниринговая компания из Шотландии – представила PowerBuoy PB150. Это огромный буй длиной 42 м, удерживаемый одиннадцатиметровым поплавком и якорной системой. Мощность одной станции 150 кВт.

Агрегат способен преобразовывать в электроэнергию вертикальные колебания. Погруженная часть буя-генератора зафиксирована на дне якорной системой. Поплавок перемещается по вертикали в унисон колебанию морских вод — он закреплен на подвижном штоке. Шток – часть линейного генератора, который во время прохождения обмотки статора вырабатывает электричество.

Конструкция оснащена системой датчиков, благодаря которой можно вручную адаптировать ход штока согласно силе, высоте и частоте волн, добиваясь наиболее рационального режима работы оборудования. Во избежание аварий в периоды сильных штормов шток поплавка блокируется автоматически.

К месту дислокации агрегат доставляют буксиры. Несколько подобных буев, установленные рядом, использующие общую якорную систему и единый силовой контур, образуют волновую ферму.

Для установки системы мощностью 10МВт необходимо 0,125 квадратных км водной поверхности. Первый такой буй разместили в 33 морских милях от Инвергордона (Шотландия).

Анализ среды вблизи функционирующего генератора показал, что он экологически нейтрален.

Преимущества и недостатки

Преимущества волновой энергетики:

  • волновая электростанция способна заменить волногасители, защищающие береговую линию и прибрежные сооружения от разрушения;
  • волновые электрогенераторы малой мощности можно монтировать непосредственно на мостовых опорах, причалах, принимая мощность волн;
  • удельная мощность волнения волн выше удельной мощности ветров на 1-2 порядка, соответственно волновая энергетика может оказаться выгоднее, нежели ветряная.

Недостатки:

  • штормовая волна способна смять лопасти водяных турбин. Проблема решается методами искусственного уменьшения мощности, заключенной в волнах;
  • некоторые типы генераторов представляют реальную угрозу для безопасности мореплавания;
  • в местах установки отдельных видов агрегатов промышленное рыболовство становится невозможным.

Источник: http://EkoEnergia.ru/alternativnaya-gidroenergetika/energiya-voln.html

Волновая электростанция

Волновая электростанция – это один из подвидов электростанций, использующих для выработки электроэнергии кинетическую энергию воды. В данном случае используется энергия волн морей и океанов.

Это относительно новый вид энергетики, хотя ее история насчитывает уже более 200 лет.

Чаще всего волновые электростанции устанавливаются недалеко от прибрежных зон там, где потенциальная волновая активность выше всего.

К таким местам относятся: западно-европейское побережье, северное побережье Англии, Тихоокеанское побережье Америки (обоих континентов), прибрежная зона Южной Африки, Австралии и Новой Зеландии.

История

Первая так называемая «волновая мельница» была запатентована Парижским патентным бюро аж в 1799 году. С этого момента инженерами и учеными производились многочисленные попытки использования кинетической энергии волн для выработки электричества. Вплоть до начала 20-го века было множество подобных изобретений, правда не одно из них так и не использовалось в промышленных масштабах.

Лишь в 1973 году после катастрофической нехватки нефтяных запасов (нефтяной кризис) интерес исследователей и ученых к альтернативной энергетике заметно возрос. Начались активно разрабатываться и создаваться, в том числе и волновые электростанции.

Первая промышленная волновая электростанция, разработка которой началась в 2005 году, была введена в эксплуатацию 23 сентября 2008 года в 5-ти километровой прибрежной зоне Португалии (район Агусадора). Ее эксплуатационная электрическая мощность составила 2,25 МВт. Сейчас она обеспечивает светом более 1,5 тыс. частных домов.

Принцип работы

Современная волновая электростанция состоит из нескольких специальных конвертеров, мощность каждого из которых может достигать 1 МВт. Каждый конвертер состоит из нескольких секций, между которыми закреплены на движимых конструкциях гидравлические поршни. К каждому поршню или системе поршней привязан гидравлический двигатель, который приводит во вращение электрический генератор.

Под действием волн конвертер начинает качаться, что приводит в движение гидравлические поршни. Последние создают в гидравлической системе, в которой находится масло, давление, а оно в свою очередь движет гидравлическими двигателями.

Один конвертер может достигать в длину до 150 метров и иметь диаметр около 3 метров. Вес одной такой установки не редко достигает 700 – 800 тонн.

Есть и другие конструкции конвертеров, которые представляют собой отдельные буи, расположенные не горизонтально, а вертикально. Принцип их работы аналогичен предыдущему с той лишь разницей, что гидравлические поршни имеют несколько иную форму.

Сложность конструкций всех существующих конвертеров заключается лишь в эксплуатационных особенностях механических их частей. Ведь волновые электростанции, как правило, находятся в соленой воде, поэтому очень важно не допустить ее контакта с металлическими элементами конвертера.

Также очень часто приходится использовать специальные приспособления (волнорезы и тормозные щиты), чтобы снизить чрезмерную энергию волны, которая с легкостью может разрушить всю конструкцию.

Интересно

Удельная мощность всех волн морей и океанов намного превосходит как ветровую, так и солнечную суммарную энергию.

Ученые подсчитали, что средняя эквивалентная мощность волны на нашей планете равняется примерно 15 кВт на погонный метр. И это при средней высоте волн до 1 метра.

Если же волны, а это бывает не так уж и редко, достигают высоты 2 и более метров, их эквивалентная мощность может доходить до 80 кВт/м пог.

Источник: http://scsiexplorer.com.ua/index.php/ljudi-i-tehnologii/kak-eto-rabotaet/2066-volnovaja-elektrostantsija.html

2.7. Волновые электростанции — Энергетика: история, настоящее и будущее

В настоящее время находят практическое применение установки по использованию энергии волн в морях и океанах, суммарная мощность которых по различным методикам оценивается в более чем 100 млрд. кВт.

Морские волны

При средней высоте волн в Мировом океане 2,5 м и периоде 8 с удельный поток энергии, приходящийся на 1 м фронта волны, составляет 75 кВт/м.

Удельный поток энергии ветровых волн, например, в морях стран СНГ (кВт/м): Азовское – 3, Черное – 6–8, Каспийское – 7–11, Охотское – 12–20, Берингово – 15–44, Баренцово – 22–29, Японское – 21–31, а суммарная мощность волн, набегающих на побережье (в пределах СНГ), составляет (млн.кВт): на Черном море – 14,7; Каспийском 67,5; Баренцевом – 56, Охотском – 129.

К положительным факторам волновой энергии относятся значительный суммарный потенциал, увеличение мощности в осенне-зимний период, когда растет потребление электроэнергии, а к недостаткам – ее прерывистость.

В разных странах эксплуатируется большое количество навигационных буев, использующих энергию волн. В 1985 г. в Норвегии были введены в строй и подключены к энергосистеме две первые в мире опытно-промышленные волновые электростанции.

Рис. 2.28. Схема пневматической волновой электростанции: а – схема движения воздушного потока; б – схема волновой электростанции; 1 – корпус; 2 – воздушная турбина; 3 – воздушная камера; 4 – стальная башня; 5 – генератор

Волновые гидроэнергетические установки состоят из трех основных частей – рабочего тела (или водоприемника), силового преобразователя с генератором электроэнергии и системы крепления.

Рабочее тело (твердое, жидкое или газообразное), непосредственно контактируя с водой, перемещается под действием волн или изменяет тем или иным образом условия их распространения. В качестве рабочего тела могут использоваться поплавки, волноприемные камеры, эластичные трубы, волноотбойные сооружения и другие.

Силовой преобразователь предназначен для преобразования энергии, запасенной рабочим телом (механической энергии движения твердого тела, перепада уровней воды в бассейнах, давления воздуха или жидкости), в энергию, пригодную для передачи на расстояние или для непосредственного использования. В качестве силовых преобразователей могут применяться гидравлические и воздушные турбины, водяные колеса, зубчатые или цепные передачи и другие устройства.

Волновая электростанция в районе г. Агусадор (Португалия)

Волновая электростанция «Oceanlinx» (Австралия)

Система крепления обеспечивает удержание на месте волновой установки.

Различные типы волновых установок отличаются той составляющей энергии ветровых волн (разновидностью кинетической или потенциальной энергии), которую рабочее тело установки преобразует в другой вид энергии.

Одной из наиболее эффективных считается пневматическая волновая электростанция (рис. 2.28). Основной частью такой установки является камера, нижняя открытая часть которой погружена под наинизший уровень воды (ложбину волны).

При поднятии и опускании уровня воды в море в камере происходит циклическое сжатие и расширение воздуха, движение которого через систему клапанов приводит во вращение воздушную турбину.

Такая система широко применяется в мире для питания электроэнергией навигационных буев.

Одна из первых в мире волновых электростанций мощностью около 500 кВт в Норвегии также представляет собой пневматическую волновую установку, основной частью которой является камера с нижней открытой частью, погруженной под наинизший уровень поверхности воды.

Вторая из двух первых в мире волновых электростанций мощностью 450 кВт в Норвегии, использующая эффект набегания волны на отлогую суживающуюся поверхность (конфузорный откос), включает расположенный в фиорде суживающийся канал длиной 147 м с турбинным водоприемником, расположенным на 3 м выше среднего уровня моря. Установки такого типа, расположенные на берегу, имеют преимущества перед другими типами волновых установок, исключая трудности, связанные с их обслуживанием и ремонтом.

Одна из успешнейших на данный момент попыток эффективно перерабатывать энергию океанских волн – волновая электростанция «Oceanlinx» в акватории города Порт-Кембл (Австралия). Она была введена в эксплуатацию еще в 2005 году, затем была демонтирована для реконструкции и переоборудования и только в начале 2009 г. вновь запущена в действие.

Принцип ее работы заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти.

Из-за того, что направление движения волн и их сила постоянно меняются, на станции «Oceanlinx» используется турбина Denniss-Auld c регулируемым углом поворота лопастей. Одна силовая установка станции «Oceanlinx» обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт.

Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества.

В сентябре 2008 года в городке Агусадор (Португалия) для обеспечения местных жителей электроэнергией была введена в строй коммерческая волновая электростанция.

Проект был создан английской компанией «Pelamis Wave Power», давно экспериментирующей с энергией океанов. Пока на станции работают только три преобразователя волновой энергии – змеевидных устройства, наполовину погруженных в воду.

]

Диаметр каждого преобразователя – 3.5 метра, длина – 140 метров. Именно они конвертируют силу волн в электричество.

Принцип действия преобразователей прост: волны поднимают и опускают их секции, а внутренняя гидравлическая система сопротивляется движению, на основе чего вырабатывается электричество, которое по кабелям передается на берег.

Сейчас мощность станции 2,25 МВт. Спустя какое-то время будет добавлено еще 25 преобразователей и тогда мощность станции возрастет до 21 МВт, что достаточно для снабжения 15 тыс. домов.

Волны мира могут генерировать 2 тераватта энергии, что примерно в 2 раза превосходит объем всей производимой электроэнергии. Естественно, количество вырабатываемой энергии зависит от силы волн, которая, как известно, непостоянна во времени. Но ресурс, используемый волновой электростанцией, абсолютно возобновляемый.

Источник: http://energetika.in.ua/ru/books/book-5/part-1/section-2/2-7

Современная электроэнергетика

Страница 121 из 130

17.2. Типы гидроэнергетических установок

Гидроэнергетическая установка (ГЭУ) предназначена для преобразования механической энергии водного потока в электрическую энергию или, наоборот, электрическая энергия преобразуется в механическую энергию воды.

Гидроэнергетическая установка состоит из гидротехнических сооружений, энергетического и механического оборудования. Различают следующие основные типы гидроэнергетических установок:

  • гидроэлектростанции (ГЭС);
  • насосные станции (НС);
  • гидроаккумулирующие электростанции (ГАЭС);
  • комбинированные электростанции ГЭС—ГАЭС;
  • приливные электростанции (ПЭС).

Гидроэлектростанция — это предприятие, на котором гидравлическая энергия преобразуется в электрическую.

Основными сооружениями ГЭС на равнинной реке являются плотина, создающая водохранилище и сосредоточенный перепад уровней, т.е.

напор, и здание ГЭС, в котором размещаются гидравлические турбины, генераторы, электрическое и механическое оборудование (рис. 17.I).

В случае потребности строятся водосбросные и судоходные сооружения, водозаборы для систем орошения и водоснабжения, рыбопропускные сооружения и т.п.

Вода под действием тяжести по водоводам движется из верхнего бьефа в нижний, вращая рабочее колесо турбины. Гидравлическая турбина соединена валом с ротором генератора. Турбина и генератор вместе образуют гидроагрегат.

В турбине гидравлическая энергия преобразуется в механическую энергию вращения на валу агрегата, а генератор преобразует эту энергию в электрическую. Возможно создание на реке каскадов ГЭС.

В России построены и успешно эксплуатируются Волжский, Камский, Ангарский, Енисейский и другие каскады ГЭС.

Среди типов гидроэнергетических установок ГЭС являются наиболее крупными. В России построена на Енисее Саяно-Шушенская ГЭС им. П.С. Непорожнего мощностью 6,4 млн кВт (рис. 17.3, рис. 17.I).

Ведется проектирование Туруханской ГЭС мощностью до 20 млн кВт.

Все построенные ГЭС, особенно обладающие крупными водохранилищами, играют решающую роль в обеспечении надежности, устойчивости и живучести Единой энергетической системы России.

Большой интерес в мире и в России в настоящее время вызывает возможность создания малых ГЭС.

Малые ГЭС (мощностью до 30 МВт) могут создаваться в короткие сроки с использованием унифицированных гидроагрегатов и строительных конструкций с высоким уровнем автоматизации систем управления. Экономическая эффективность их использования существенно возрастает при комплексном использовании малых водохранилищ (рекреация, рыбоводство, водозаборы для систем орошения и водоснабжения и т.п.).

Насосная станция предназначена для перекачки воды с низких отметок на высокие и транспортировки воды в удаленные пункты.

На насосной станции устанавливаются насосные агрегаты, состоящие из насоса и двигателя. Насосная станция является потребителем электрической энергии.

Они используются для водоснабжения тепловых и атомных электростанций, коммунально-бытового и промышленного водоснабжения, в ирригационных системах, судоходных каналах, пересекающих водоразделы, и т.п.

Гидроаккумулирующая электростанция предназначена для перераспределения во времени энергии и мощности в энергосистеме. В часы пониженных нагрузок ГАЭС работает как насосная станция. Она за счет потребляемой энергии перекачивает воду из нижнего бьефа в верхний и создает запасы гидроэнергии.

В часы максимальной нагрузки ГАЭС работает как гидроэлектростанция. Вода из верхнего бьефа пропускается через турбины в нижний бьеф, и ГАЭС вырабатывает и выдает электроэнергию в энергосистему.

ГАЭС потребляет дешевую электроэнергию, а выдает более дорогую энергию в период пика нагрузки, заполняет провалы нагрузки и снижает пики нагрузки в энергосистеме, позволяет работать агрегатам атомных и тепловых электростанций в наиболее экономичном и безопасном равномерном режиме, резко снижая при этом удельный расход топлива на производство 1 кВт · ч электроэнергии в энергосистеме.

В России работает Загорская ГАЭС мощностью 1200 МВт.

ГЭС—ГАЭС вырабатывает электроэнергию в период пика нагрузки за счет притока воды в верхний бьеф и за счет перекаченной из нижнего бьефа в верхний в период провалов нагрузки в энергосистеме.

Реконструкция ГЭС в ГЭС—ГАЭС, как показывает зарубежный опыт, весьма эффективна в энергосистемах, где мала доля ГЭС и ГАЭС.

Приливные электростанции преобразуют механическую энергию приливно-отливных колебаний уровня воды в море в электрическую энергию. В некоторых морских заливах приливы достигают 10—12 м, а наибольшие приливы наблюдаются в заливе Фанди (Канада) и достигают 19,6 м.

]

Технические ресурсы приливной энергии России оцениваются в 200—250 млрд кВт · ч в год и в основном сосредоточены у побережий Охотского, Берингова и Белого морей.

В России наиболее перспективным наплавным способом возведена опытная Кислогубская ПЭС вблизи г. Мурманска. Во Франции построена ПЭС Ранс мощностью 240 МВт.

Источник: http://lib.rosenergoservis.ru/sovremennaya-elektroenergetika%3Fstart%3D120

Способ преобразования энергии падающей воды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано в различных отраслях народного хозяйства. Способ преобразования энергии падающей воды в электрическую энергию включает водяную турбину и электрический генератор связанные между собой.

Вдоль по руслу горной реки протекающей, по склону горы, размещают горизонтальный и вертикальный водоканалы, связанные между собой и наполненные потоком воды. Внутри в нижней части вертикального водоканала размещают водяную турбину.

Водяная турбина связана через специальное устройство с электрическим генератором. Электрический генератор связан через провода с потребителем этой энергии.

Техническим результатом является создание гидроэлектростанции нового поколения, не нарушающей экологическую обстановку окружающей среды. 1 з.п.ф-лы, 2 ил.

https://www.youtube.com/watch?v=ixn8VmpmS64

Изобретение относится к области энергетики и может быть использовано в различных отраслях народного хозяйства.

Известные к заявляемому изобретению по существенным признакам являются существующие гидроэлектростанции, преобразующие энергию текучей воды в электрическую энергию, приводящую во вращательное движение водяную турбину и электрический генератор, связанный с ней.

Наиболее близким к заявляемому изобретению по существенным признакам является Авторское свидетельство от 5 мая 1991 г., авторов: Юрик А.Д. и Юрик Д.А. «Водяное колесо МГД — генератор», содержащий вертикальный водоканал подвода воды к водяной турбине.

Известное техническое решение включает следующие признаки, сходные с прототипом: вертикальный водоканал, водяная турбина, электрический генератор.

Техническая задача, которую решает заявляемое изобретение, включает создание гидроэлектростанции нового поколения, не нарушающей экологическую обстановку окружающей среды.

Поставленная задача решается тем, что предложенный способ преобразования энергии падающей воды в электрическую энергию заключается в следующем: данные преобразования осуществляются с помощью водяной турбины и электрического генератора, связанных между собой через специальное устройство, при этом по руслу горной реки, протекающей по склону горы, размещены горизонтальные и вертикальные водоканалы, связанные между собой и заполненные потоком воды русла горной реки. Внутри в нижней части вертикального водоканала размещена водяная турбина, связанная через специальное устройство с электрическим генератором, который связан через провода с потребителем электроэнергии. Данный способ предусматривает установку данного типа электростанции сверху донизу русла горной реки — покаскадно.

На фиг. 1 показан внешний вид гидроэлектростанции, вид спереди.

Фиг. 2 — разрез А-А по оси симметрии гидроэлектростанции, вид сбоку.

В настоящее время в гидроэлектростанциях (ГЭС) поток падающей воды создается плотиной, установленной поперек русла реки, имеющей высоту плотины от 30 до 100 м и более, при этом до плотины вблизи русла реки заливаются огромные площади (территории) водой, нарушая, экологическую обстановку территории.

В данном способе предлагается дифференцированный способ преобразования энергии падающей воды горной реки в электрическую энергию, не нарушая состояния окружающей среды.

Поток падающей воды объемом 1 м3 (1000 кг) с высоты от 30 до 100 м преобразуется данным способом в электрическую энергию от 300 кВт до 1000 кВт, а поток падающей воды объемом 500 м3 с высоты 1000 м (преобразование дифференцированное) по частям заменяет по мощности Красноярскую ГЭС, т.е. на 1000 м высоты 10 гидроэлектростанций с перепадом 100 м по высоте и мощностью 500 тыс. кВт.

При строительстве такого типа электростанции можно использовать трубы нефтегазовой отрасли и железобетонные трубы любого диаметра.

Предложенный способ «Способ преобразования энергии падающей воды в электрическую энергию» (фиг.

1, 2) содержит на русле 1 горной реки горизонтальный водоканал 2, установленный на опоры 3, и вертикальный канал 4, при этом горизонтальный водоканал 2 заполнен потоком воды 5 русла реки горной 1 реки, соединен с вертикальным водоканалом 4.

В вертикальном водоканале 4, в его внутренней нижней части, размещена водяная турбина 6, связанная через специальное устройство 7 с электрическим генератором 8.

Электрический генератор 8 соединен проводами 9 с потребителями электрической энергии 10.

«Способ преобразования энергии падающей воды в электрическую энергию» заключается в следующем: поток воды 5 русла 1 горной реки, поступающей в горизонтальный водоканал 2 и через вертикальный водоканал 4, падает на водяную турбину 6, приводя ее во вращательное движение.

Водяная турбина 6 через специальное устройство 7 приводит во вращательное движение электрический генератор 8.

Электрический генератор 8, вырабатывающий электрическую энергию (электрический ток), передает ее по проводам 9 к потребителю этой энергии 10.

В предложенном способе для наполнения горизонтального и вертикального водоканалов можно использовать способ сообщающихся сосудов, при этом водоканалы по всей длине должны быть герметичны.

Способ преобразования энергии падающей воды в электрическую энергию, включающий водяную турбину и электрический генератор, связанные между собой, отличающийся тем, что вдоль по руслу горной реки, протекающей по склону горы, размещают горизонтальный и вертикальный водоканалы, связанные между собой и наполненные потоком воды, при этом внутри в нижней части вертикального водоканала размещают водяную турбину, связанную через специальное устройство с электрическим генератором, который связан через провода с потребителем этой энергии.

Источник: http://www.FindPatent.ru/patent/249/2494282.html

Гидроэлектростанция (ГЭС) Около 23% электроэнергии во всем мире вырабатывают ГЭС. Они преобразуют кинетическую энергию падающей воды в механическую энергию. — презентация

1<\p>

2 Гидроэлектростанция (ГЭС) Около 23% электроэнергии во всем мире вырабатывают ГЭС. Они преобразуют кинетическую энергию падающей воды в механическую энергию вращения турбины, а турбина приводит во вращение электромашинный генератор тока. Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки.<\p>

3 Типы ГЭС Гидроэлектрические станции (ГЭС) Плотинные гидроэлектростанции Русловые гидроэлектростанции Приплотинные гидроэлектростанции Деривационные гидроэлектростанции Гидроаккумулирующие электростанции Приливные электростанции Волновые электростанции и на морских течениях<\p>

4 Схема ГЭС<\p>

5 Принцип работы ГЭС Плотина создает подпор воды в водохранилище, обеспечивающем постоянный подвод энергии. Вода истекает через водозабор, уровнем которого определяется скорость течения. Поток воды, вращая турбину, приводит во вращение электрогенератор. По высоковольтным ЛЭП электроэнергия передается на распределительные подстанции.<\p>

6 Наименование Мощ- ность, ГВт Среднегодовая выработка, млрд кВт·ч География Саяно-Шушенская ГЭС 6,4023,50 р. Енисей, г. Саяногорск Красноярская ГЭС 6,0020,40 р. Енисей, г. Дивногорск Братская ГЭС 4,5022,60 р. Ангара, г. Братск Усть-Илимская ГЭС 4,3221,70 р. Ангара, г. Усть-Илимск Богучанская ГЭС 3,0017,60 р. Ангара, г. Кодинск Крупнейшие гидроэлектростанции России<\p>

]

7 Самая крупная в России ГЭС (Саяно-Шушенская)<\p>

8 Гидроаккумулирующие электростанции (ГАЭС) Гидроаккумулирующие электростанции используется для выравнивания суточной неоднородности графика электрической нагрузки. В часы малых нагрузок ГАЭС, потребляя электроэнергию, перекачивает воду из низового водоема в верховой, а в часы повышенных нагрузок в энергосистеме использует запасенную воду для выработки пиковой энергии. Загорская ГАЭС<\p>

9 Приливная электростанция (ПЭС) Приливные электростанции используют энергию приливов. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 13 метров. Приливная электростанция Ля Ранс, Франция<\p>

10 Кислогубская ПЭС — экспериментальная ПЭС расположенна в губе Кислая Баренцева моря, вблизи поселка Ура-Губа Мурманской области. Первая и единственная приливная электростанция России. Состоит на государственном учёте как памятник науки и техники.<\p>

11 Русловая гидроэлектростанция (РусГЭС) Русловая гидроэлектростанция (РусГЭС) относится к бесплотинным гидроэлектростанциям, которые размещают на равнинных многоводных реках, в узких сжатых долинах, на горных реках, а также в быстрых течениях морей и океанов.<\p>

12 Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Вода отводится из речного русла через специальные водоотводы. Вода подводится непосредственно к зданию ГЭС.<\p>

13 Волновые электростанции Для производства электроэнергии используются две основные характеристики волн: кинетической энергия, и энергии поверхностного качения. Именно эти факторы и пытаются использовать при строительстве волновых электростанций.<\p>

14 Схема работы волновой электростанции<\p>

15 Источники информации 1. Википедия (http://ru.vikipedia.org/viki/) В начало<\p>

Источник: http://www.myshared.ru/slide/491744

Типы электростанций. Виды электростанций. Принципиальная схема тепловой электростанции

Типы электростанций

В зависимости от источника энергии различают следующие типы электростанций:

  • Тепловые электростанции (ТЭС), использующие природное топливо. Они делятся на конденсационные (КЭС) и теплофикационные (ТЭЦ)
  • Гидравлические электростанции (ГЭС) и гидроаккумулирующие (ГАЭС), использующие энергию падающей воды
  • Атомные электростанции (АЭС), использующие энергию ядерного распада
  • Дизельные электростанции (ДЭС)
  • ТЭС с газотурбинными (ГТУ) и парогазовыми установками (ПГУ)
  • Солнечные электростанции (СЭС)
  • Ветровые электростанции (ВЭС)
  • Геотермальные электростанции (ГЕОТЭС)
  • Приливные электростанции (ПЭС)

Наиболее часто в современной энергетике выделяют традиционную и нетрадиционную энергетики.

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии — электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях.

В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями.

Примерно 70% мировой электроэнергии вырабатывают на ТЭС. Они делятся на конденсационные тепловые электростанции (КЭС), вырабатывающие только электроэнергию, и теплоэлектроцентрали (ТЭЦ), которые производят электроэнергию и теплоту.

В России около 75% энергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии. ГЭС выгодно строить на полноводных горных реках. Поэтому наиболее крупные ГЭС построены на сибирских реках. Енисее, Ангаре. Но также построены каскады ГЭС и на равнинных реках: Волге, Каме.

АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает (в западной части страны).

Основным типом электростанций в России являются тепловые (ТЭС). Эти установки вырабатывают примерно 67% электроэнергии России. На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей.

Рис.1. Принципиальная схема тепловой электростанции

Принципиальная схема тепловой электростанции представлена на рис.1.

Стоит иметь в виду, что в ее конструкции может быть предусмотрено несколько контуров — теплоноситель от тепловыделяющего реактора может не идти сразу на турбину, а отдать свое тепло в теплообменнике теплоносителю следующего контура, который уже может поступать на турбину, а может дальше передавать свою энергию следующему контуру. Также в любой электростанции предусмотрена система охлаждения отработавшего теплоносителя, чтобы довести температуру теплоносителя до необходимого для повторного цикла значения. Если поблизости от электростанции есть населенный пункт, то это достигается путем использования тепла отработавшего теплоносителя для нагрева воды для отопления домов или горячего водоснабжения, а если нет, то излишнее тепло отработавшего теплоносителя просто сбрасывается в атмосферу в градирнях. Конденсатором отработавшего пара на неатомных электростанциях чаще всего служат именно градирни.

Основное оборудование ТЭС — котел-парогенератор, турбина, генератор, конденсатор пара, циркуляционный насос.

В котле парогенератора при сжигании топлива выделяется тепловая энергия, которая преобразуется в энергию водяного пара. В турбине энергия водяного пара превращается в механическую энергию вращения.

Генератор превращает механическую энергию вращения в электрическую.

Схема ТЭЦ отличается тем, что по ней, помимо электрической энергии, вырабатывается и тепловая путем отвода части пара и нагрева с его помощью воды, подаваемой в тепловые магистрали.

Есть ТЭС с газотурбинными установками. Рабочее тело и них — газ с воздухом. Газ выделяется при сгорании органического топлива и смешивается с нагретым воздухом. Газовоздушная смесь при 750-770°С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, легко пускается, останавливается, регулируется. Но их мощность в 5-8 раз меньше паровых.

Процесс производства электроэнергии на ТЭС можно разделить на три цикла: химический — процесс горения, в результате которого теплота передается пару; механический — тепловая энергия пара превращается в энергию вращения; электрический — механическая энергия превращается в электрическую.

Общий КПД ТЭС состоит из произведения КПД (η) циклов:

КПД идеального механического цикла определяется так называемым циклом Карно:

где T1 и Т2 — температура пара на входе и выходе паровой турбины.

На современных ТЭС Т1=550°С (823°К), Т2=23°С (296°К).

Практически с учетом потерь ηтэс=36-39%. Из-за более полного использования тепловой энергии КПД ТЭЦ = 60-65%.

Атомная электростанция отличается от ТЭС тем, что котел заменен ядерным реактором. Теплота ядерной реакции используется для получения пара.

Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колоссальной кинетической энергии, которая, в свою очередь, превращается в тепловую. Установка, где идут эти превращения, называется реактором.

Через активную зону реактора проходит вещество теплоноситель, которое служит для отвода тепла (вода, инертные газы и т.д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде.

Образующийся водяной пар поступает в турбину. Регулирование мощности реактора производится с помощью специальных стержней.

Они вводятся в активную зону и изменяют поток нейтронов, а значит, и интенсивность ядерной реакции.

Природное ядерное горючее атомной электрической станции — уран. Для биологической защиты от радиации используется слой бетона в несколько метров толщиной.

]

При сжигании 1 кг каменного угля можно получить 8 кВт-ч электроэнергии, а при расходе 1 кг ядерного топлива вырабатывается 23 млн. кВтч электроэнергии.

Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергетических установках (ГЭУ) трех видов:

  • гидравлические электростанции (ГЭС);
  • приливные электростанции (ПЭС), использующие энергию приливов и отливов морей и океанов;
  • гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.

Гидроэнергетические ресурсы в турбине ГЭУ преобразуются в механическую энергию, которая в генераторе превращается в электрическую.

Таким образом, основными источниками энергии являются твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.

Все основные типы электростанций оказывают значительное негативное воздействие на природу. ТЭС загрязняют воздух, шлаки станций, работающих на угле, занимают огромные территории. Водохранилища равнинных ГЭС заливают плодородные пойменные земли, приводят к заболачиванию земель. Небезопасными оказались и АЭС.

Будущее за использованием нетрадиционных источников энергии — энергии ветра, приливов, Солнца и внутренней энергии Земли.

Картинка в полном размере

Источник: http://www.gigavat.com/tipi_elektrostancij.php

Ссылка на основную публикацию